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Abstract. We consider the automatic determination of application-specific
memory subsystems via superoptimization, with the goals of reducing
memory access time and of minimizing writes. The latter goal is of con-
cern for memories with limited write endurance. Our subsystems out-
perform general-purpose memory subsystems in terms of performance,
number of writes, or both.

1 Introduction

Due to the large disparity in performance between main memory and proces-
sor cores, large cache hierarchies are a necessary feature of modern computer
systems. By exploiting locality in memory references, these cache hierarchies at-
tempt to reduce the amount of time an application spends waiting on memory
accesses. Although cache hierarchies are most common, one can extend this no-
tion to a generalized on-chip memory subsystem, which is interposed between
the computation elements and off-chip main memory.

For general-purpose computers, memory subsystems are designed to have
good average-case performance across a large range of applications. However,
due to the general-purpose nature of these memory subsystems, they may not
be optimal for a particular application. Because of the potential performance
benefit with a custom memory subsystem, we propose the use of memory sub-
systems tailored to a particular application. Such custom memory subsystems
have been used for years for applications deployed on ASICs and FPGAs [18].
Further, it is conceivable that general-purpose computer systems may one day
be equipped with a more configurable memory subsystem if the configurability
provides enough of a performance advantage.

Although DRAM is the most popular choice for main memory in modern
computer systems today, there are several disadvantages to DRAM technology
(e.g., volatility and scaling), leading researchers to seek other technologies. Be-
cause DRAM is volatile, it can be power-hungry since it requires power just to
retain information. This is particularly apparent when used in a setting with in-
frequent main memory accesses. However, when used in a setting with frequent
memory accesses, the refresh requirement for a large DRAM can greatly reduce
application performance [19]. There are significant challenges to scaling down
DRAM cells [13] since bits are stored as charge on a capacitor, which limits
energy efficiency and performance.



Several alternative main memory technologies have been proposed, including
PCM [12] and STT-RAM [11]. Although there are many possible main memory
technologies that could be considered, a common theme for many proposed tech-
nologies is an aversion to writes. For PCM, there is a limited write endurance,
making it beneficial to avoid writes to extend the lifetime of the device. Further,
on PCM devices writes are slow and energy-hungry. For STT-RAM, although
writes do not limit the lifetime of the device, writes are much slower than reads
and consume more energy.

Because writes are often costly with respect to energy, performance, and
endurance, here we seek to determine if it is possible to modify the memory
subsystem to reduce the number of writes to main memory. We are particularly
interested in the possibility of reducing the number of writes beyond what a
memory subsystem optimized for performance would provide.

We are pursuing this investigation using superoptimization techniques which
originated in the compiler literature. The concept of superoptimization was in-
troduced with the goal of finding the smallest instruction sequence to implement
a function [14]. This differs from traditional program optimization in that super-
optimization attempts to find the best sequence at the expense of a potentially
long search process rather than simply improving code. In a similar vein, we are
interested in finding the best memory subsystem at the expense of a potentially
long search process rather than a generic memory subsystem.

Previously, we have used superoptimization techniques to improve the execu-
tion times of applications [21,22]. In this paper, we expand the scope to include
minimization of memory writes. We will show how the superoptimization tech-
nique is beneficial in terms of write minimization, and we will will also show how
one can use superoptimization in a multi-objective context.

To evaluate our superoptimized memory designs, we target an ASIC with an
external LPDDR main memory. The ASIC assumes a 45 nm process, clocked
at 1 GHz, with 1 mm2 available for the deployment of our custom memory
subsystems. The external LPDDR is a 512 Mib device clocked at 400 MHz.
All on-chip memory subsystems share access to the external LPDDR memory
device.

2 Related Work

Superoptimization was originally introduced in [14]. In that work, exhaustive
search was used to find the smallest sequence of instructions to implement a
function. This is in contrast with traditional code optimization where pre-defined
transformations are used in an attempt to improve performance. Note that tra-
ditional code optimization is not truly optimization in the classical sense, but
instead simply code improvement. Superoptimization, on the other hand, does
produce an optimal result when applied in this manner.

Since its introduction, superoptimization has been successfully used in com-
pilers such as GCC, peephole optimizers [1], and binary translators [2].



General design space exploration has been applied to many fields, such as
system-on-chip (SoC) communication architectures and integrated circuit de-
sign. Although a single objective, such as performance or energy, is often used,
design space exploration for multiple objectives is also common [17]. Of partic-
ular interest to us is design space exploration applied to memory subsystems.
Design space exploration has been used extensively to find optimal cache pa-
rameters [6, 7]. This line of work has been extended to consider a cache and
scratchpad together [3]. However, the ability to change completely the memory
subsystem for a specific application and main memory subsystem distinguishes
this work from previous work.

Many non-traditional memory subsystems have been proposed. These struc-
tures are often intended to be general-purpose in nature, but to take advantage
of some aspect of application behavior that is common across many applications.
However, there are also many non-traditional memory subsystems designed for
particular applications, usually with much effort. Such designs are a common
practice for applications deployed on FPGAs and ASICs [4].

Although performance is perhaps the most common objective, non-traditional
memory subsystems optimized for other objectives have also been considered.
For example, the filter cache [10] was introduced to reduce energy consumption
with a modest performance penalty.

The combination of multiple memory subsystem components has also been
considered to various degrees. For example, the combination of a scratchpad and
cache has been considered [18]. Further, the combination of multiple caching
techniques including split caches has been considered [15].

3 Method

The superoptimization of a memory subsystem involves several items. First we
require a memory address trace from the application. This trace allows us to
simulate the performance of the application with different memory subsystems.
Next, we perform the superoptimization, which involves generating proposal
memory subsystems and simulating them to determine their performance.

In order to evaluate the performance of a particular memory subsystem for
an application, we use address traces. To gather the address traces, we use a
modified version of the Valgrind [16] lackey tool. This allows us to obtain concise
address traces for applications that contain only data accesses (reads, writes,
and modifies). We ignore instruction accesses. All of the address traces contain
virtual (instead of physical) addresses and are gathered for 32-bit versions of the
benchmark applications.

To evaluate the performance of the memory subsystems proposed by the
superoptimizer, we use a custom memory simulator. We use a custom simulator
for three reasons. First, we need to simulate complex memory subsystems beyond
simple caches. Second, rather than the number of cache misses, we are interested
in total memory access time. Finally, the simulator must be fast enough to



simulate large traces many thousands of repetitions in a reasonable amount of
time.

The memory subsystem superoptimizer is capable of simulating the mem-
ory subsystem components shown in Table 1. The CACTI tool [20] is used to
determine latencies for ASIC targets.

Table 1: Memory Subsystem Components

Component Description Parameters (n ∈ Z+)

Cache Parameterizable cache

Line size (2n)
Line count (2n)
Associativity (1 . . . line count)
Replacement policy
Write policy

FIFO Stream buffer Depth (2n)

Offset Address offset Value (±n)

Prefetch Stride prefetcher Stride (±n)

Rotate Rotate address transform Value (±n)

Scratchpad Scratchpad memory Size (2n)

Split Split memory Location (n)

XOR XOR address transform Value (n)

For caches, the simulator supports four replacement policies: least-recently
used (LRU), most-recently used (MRU), first-in first-out (FIFO), and pseudo-
least-recently used (PLRU). The PLRU policy approximates the LRU policy by
using a single age bit per cache way rather than lg n age bits, where n is the
associativity of the cache.

The offset, rotate, and xor components in Table 1 are address transfor-
mations. The offset component adds the specified value to the address. The
rotate component rotates the bits of the address that select the word left by
the specified amount (the bits that select the byte within the word remain un-
changed). Note that for a 32-bit address with a 4-byte word, 32− lg 4 = 30 bits
are used to select the word. Finally, the xor component inverts the selected bits
of the address.

Other supported components include prefetch and split. The prefetch

component performs an additional memory access after every memory read to
do the prefetch. This additional access reads the word with the specified distance
from the original word that was accessed. Finally, the split component divides
memory accesses between two memory subsystems based on address: accesses
with addresses above a threshold go to a separate memory subsystem from ad-
dresses below the threshold. Accesses that are not resolved within the split are
sent to the next memory subsystem or main memory.

The communication between each of the memory components as well as the
communication between the application and main memory is performed using



4-byte words. The bytes within the word are selected using a 4-bit mask to allow
byte-addressing. The address bus is 30 bits, providing a 32-bit address space.

For the results presented here, the main memory is assumed to be a DRAM
device. We use a DDR3-800D memory, whose properties are shown in Table 2.

Table 2: Main Memory Parameters.

Parameter Description Value

Frequency DRAM I/O frequency 400 MHz

CAS Cycles to select a column 5

RCD Cycles from open to access 5

RP Cycles required for precharge 5

Page size Size of a page in bytes 1024

Page count Number of pages per bank 65536

Width Channel width in bytes 8

Burst size Number of columns per access 4

Page mode Open or closed page mode open

DDR Double data rate true

To guide the optimization process, we use a variant of threshold acceptance [5]
called old bachelor acceptance [9]. Old bachelor acceptance is a Markov-chain
Monte-Carlo (MCMC) stochastic hill-climbing technique. Old bachelor accep-
tance provides a compromise between search space exploration and hill climbing.

Using stochastic hill-climbing, one typically selects an initial state, st = s0,
and then generates a proposal state, s∗, in the neighborhood of the current state.
The state is then either accepted, becoming st+1, or rejected. With threshold
acceptance, the difference in cost between the current state, st, and the proposal
state, s∗, is compared to a threshold, Tt, to determine if the proposal state
should be accepted. Thus, we get the following expression for determining the
next state:

st+1 =

{

s∗ if c(s∗) < c(st) + Tt

st otherwise

For our purposes, the state is a candidate memory subsystem and the cost
function, c(·), is described below to reflect the multiple objectives used in the
optimization process.

With threshold acceptance, the threshold is initialized to some relatively high
value, Tt = T0. The threshold is then lowered according a cooling schedule. The
recommended schedule in [5] is Tt+1 = Tt − ∆Tt where ∆ ∈ (0, 1). Old bachelor
acceptance generalizes this, allowing the threshold to be lowered when a state is
accepted and raised when a state is not accepted. This allows the algorithm to
escape areas of local optimality more easily. For our experiments, we used the
following schedule:



Tt+1 =

{

Tt − ∆Tt if c(s∗) < c(st) + Tt

Tt + ∆Tt otherwise

To reduce the time required for superoptimization, we employ two techniques
to speed up the process. First, we memoize the results of each state evaluation so
that when revisiting a state we do not need to simulate the memory trace again.
The second improvement is that we allow multiple superoptimization processes
to run simultaneously sharing results using a database, thereby allowing us to
exploit multiple processor cores.

Our memory subsystem optimizer is capable of proposing candidate memory
subsystems comprised of the structures shown in Table 1. These components can
be combined in arbitrary ways leading to a huge search space limited only by
the constraints. For the ASIC target, the constraint is the area as reported from
the CACTI tool [20].

Given a state, st, we compute a proposal state s∗ by performing one of the
following actions:

1. Insert a new memory component to a random position,
2. Remove a memory component from a random position, or
3. Change a parameter of the memory component at a random position.

We showed, in [21], that the above neighborhood generation technique is
ergodic. To ensure that any discovered memory subsystem is valid, we reject any
memory subsystem that exceeds the constraints. However, there are other ways
a memory subsystem may be invalid. First, because we support splitting between
memory components by address, any address transformation occurring in a split
must be inverted before leaving the split. To handle this, we always insert (or
remove) both the transform and its inverse when inserting (or removing) an
address transformation.

4 Benchmarks

We use a collection of four benchmarks from the MiBench benchmark suite [8] as
well as two synthetic kernels for evaluation purposes. The MiBench suite contains
benchmarks for the embedded space that target a variety of application areas.
For some benchmarks, the MiBench suite contains large and small versions. We
chose the large version in the interest of obtaining larger memory traces.

The locally developed synthetic kernels include a kernel that inserts and
then removes items from a binary heap (heap) and a kernel that sorts an array
of integers using the quicksort algorithm (qsort). Rather than implement an
application to perform these operations and use Valgrind to capture the address
trace, the addresses traces are generated directly during a simulation run, which
allows us to avoid processing large trace files for the kernels.

Because we are superoptimizing the memory subsystem, the amount of mem-
ory accessed by each benchmark is important. If a particular benchmark accesses



less memory than is available to the on-chip memory subsystem, then it should
be possible to have all memory accesses occur in on-chip memory, though such
a design may require clever address transformations.

For the 45 nm ASIC process with an area constraint of 1 mm2, we can store
a total of 379,392 bytes in a scratchpad according to our CACTI model. This
means that both the bitcount and dijkstra benchmarks are small enough to
be mapped into a scratchpad, but all of the remaining benchmarks access too
much memory for their footprint to fit on chip.

5 Results

5.1 Minimizing Writes

Our previous work focused on reducing total memory access time [21]. However,
the superoptimization technique is generic and, therefore, can be used to opti-
mize for other objectives. Here we investigate minimizing the number of writes.
The cost function used to guide the superoptimization process is the total writes
to main memory for the complete execution of the benchmark application. Thus,
we are not optimizing for performance, but exclusively for a reduction in writes
to main memory.

To determine if the memory subsystem superoptimized for writes is actually
any better at reducing writes than a memory subsystem superoptimized for total
access time, we compare each of the memory subsystems. The first column of
Figure 1(a) shows the improvement that the memory subsystems superoptimized
for writes have over the memory subsystems superoptimized for total access
time (that is, Wt/Ww where Ww is the total number of writes to main memory
when using the memory subsystem superoptimized for writes and Wt is the
total number of writes to main memory when using the memory subsystem
superoptimized for access time). The second column shows the improvement
that the memory subsystems superoptimized for total access time have over
the memory subsystems superoptimized for writes (that is, Tw/Tt, where Tt

is the total access time when using the memory subsystem superoptimized for
access time and Tw is the total access time when using the memory subsystem
superoptimized for writes). Thus, bars above one indicate an advantage of one
superoptimized memory subsystem over another.

Here we expect all bars to be at least one, indicating that the memory sub-
system superoptimized for a particular objective is at least as good for that
objective as a memory subsystem superoptimized for the other objective. In-
deed, all bars in Figure 1(a) are one or greater. In some cases, there is little
or no difference between the superoptimized memory subsystems. For example,
for the bitcount benchmark, both memory subsystems reduce the number of
writes to zero and the memory subsystem superoptimized for total access time
provides only a slight improvement in total access time over the memory sub-
system superoptimized for writes. However, in most cases, a different memory
subsystem is able to provide the best results for either objective.
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Fig. 1: (a) Write and access time improvement, relative to one another; (b) Multi-
objective superoptimization (in Section 5.2).

The memory subsystem superoptimized for writes for the bitcount bench-
mark is shown in Figure 2a and the memory subsystem superoptimized for total
access time for the bitcount benchmark is shown in Figure 2b. For this bench-
mark, the memory subsystem superoptimized for total access time provides only
a small advantage over the simpler memory subsystem that was discovered to
reduce writes to main memory.

The next memory subsystems we consider are those superoptimized for the
heap kernel. The memory subsystem superoptimized to minimize writes is shown
in Figure 2c and the memory subsystem superoptimized to minimize total access
time is shown in Figure 2d. Interestingly, these memory subsystems are very
similar with the only difference being the address transformation. Despite the
similar appearance, the each of the memory subsystems is able to provide a
benefit over the other.

The memory subsystem superoptimized for writes for the patricia bench-
mark is shown in Figure 3a and the subsystem superoptimized for total access
time is shown in Figure 3b. An interesting observation is the large and highly-
associative caches that are used when minimizing writes is the objective. These
caches are effective at eliminating writes, but they are quite slow.

Finally, we consider the memory subsystems for the qsort benchmark. Fig-
ure 3c shows the memory subsystem superoptimized for writes and Figure 3d
shows the memory subsystem superoptimized for total access time. One notable
difference between these subsystems is the presence of the prefetch component
in the memory subsystem superoptimized for total access time.

Overall, memory subsystems superoptimized to minimize total access time
appear to be capable of large reductions in total access time over memory sub-
systems superoptimized to minimize writes. On the other hand, while a memory
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Fig. 2: Superoptimized memory subsystems for bitcount and heap.

subsystem superoptimized for writes is often able to reduce the number of writes
compared to a memory subsystem superoptimized for total access time, the im-
provement is usually less pronounced.

Another observation is that the memory subsystems superoptimized for writes
are usually simpler than those superoptimized for total access time. Although
a large cache will typically eliminate writes, the large cache will likely be slow.
This implies that a large cache may be sufficient if we only care about writes, but
something more exotic will likely provide better results if we want to minimize
total access time.

5.2 Multi-Objective Superoptimization

Here we investigate multi-objective superoptimization. From the previous sec-
tion, we note that the memory subsystems that are superoptimized to minimize
total access time are fairly good at reducing the number of writes to main mem-
ory, however, the memory subsystems superoptimized to minimize writes usually
do better. On the other hand, the memory subsystems that are superoptimized
to minimize writes often perform poorly with respect to total access time. Thus,
one might wonder if it is possible to optimize for both objectives.

We use the weighted sum method to combine the objective functions to min-
imize writes and total access time. Figure 1(b) shows the improvement possible
for various objectives for the jpegd benchmark with objective weights ranging
from 100%-writes, 0%-access time through 0%-writes, 100%-access time. The
graph shows uses the performance relative to the best result for writes and total
access time. For the bars on the left, the graph shows Ww/Wm, where Wm is
the number of writes to the main memory when using the memory subsystem
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Fig. 3: Superoptimized memory subsystems for patricia and qsort.

superoptimized for multiple objectives and Ww is the number of writes to the
main memory when using the memory subsystem superoptimized to minimize
writes. For the bars on the right, the graph shows Tt/Tm, where Tm is the to-
tal access time when using the memory subsystem superoptimized for multiple
objectives and Tt is the total access time when using the memory subsystem
superoptimized to minimize total access time. Thus, higher values (closer to 1)
indicate better results.

As can be seen in the graph, the largest differences in how good the memory
subsystems perform for each objective occur when only a single objective is
considered. When multiple objectives are considered, although there is some
difference in how good the memory subsystems are, the result is very close to
the best for all mixtures.

Figure 4 shows the memory subsystems for each mixture. When minimizing
writes is most important, we see that a simple cache suffices. However, when
minimizing total access time is also important, the large cache is separated into
two caches, which makes sense since smaller caches are faster. Finally, when
writes are no longer considered, a very complex memory subsystem is discovered,
which does little to minimize writes, but provides the lowest total access time of
all the memory subsystems considered.

6 Conclusions

We have shown that it is possible to superoptimize memory subsystems for spe-
cific applications that out-perform a general-purpose memory subsystem in terms
of performance, writes, or a mixture. Unlike previous work, the memory subsys-
tems that our superoptimizer discovers can be arbitrarily complex and contain
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Fig. 4: Memory subsystems for jpegd.

components other than simple caches. To superoptimize a memory subsystem,
we use old bachelor acceptance, which is a form of threshold acceptance.

While many benchmarks do not see a substantial improvement in write op-
timization (relative to access time optimization), for the jpegd benchmark in-
dividually optimizing for either goal provides substantial gains when measured
against that goal. In addition, it is possible to co-optimize for both objectives
and realize a memory system that performs quite well for each measure.
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