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Abstract—Architecturally-diverse systems (containing co-
processors such as reconfigurable logic and graphics engines)
have received significant attention recently in the high perfor-
mance computing community. They are new enough, however,
that application development tools are quite limited. This paper
describes our performance measurement system, TimeTrial, that
automates performance measurements of diverse, streaming data
applications. TimeTrial enables low-impact measurements by
interpreting performance queries in the TimeTrial language
and by compiling these queries to highly-specific, optimized
instrumentation that aggressively performs lossy compression
on the performance meta-data. Currently, TimeTrial supports
multi-core processors and reconfigurable logic, with GPU support
under development. We present the TimeTrial language and
its associated compiler, including its use in optimizing the
performance of an example computational science problem.

I. INTRODUCTION

The use of non-traditional architectures for high-
performance computing has received significant attention
recently. Traditional multi-core processors are frequently
augmented with co-processors that are tasked with executing
performance-critical portions of an application. These
co-processors might be field-programmable gate arrays
(FPGAs) [9], graphics processing units (GPUs) [21], or
hybrid processors such as the Cell [14]. We refer to them
collectively as architecturally diverse systems.

Authoring applications for architecturally diverse systems
is difficult for a number of reasons. First, the various co-
processors have their own unique languages (e.g., Verilog or
VHDL for FPGAs, CUDA or OpenCL for GPUs) and de-
velopment environments. Second, significant developer effort
is typically required to ensure that an algorithm deployed
on a co-processor actually does perform well, complicated
by the fact that co-processors typically have poor internal
visibility. Third, the application must be decomposed into
components that both execute and properly interface with each
other across the diverse platforms. This requires a great deal of
attention to address both correctness and performance issues.
Finally, the tools available to developers are very limited at
present. Speaking directly to the issue of FPGA co-processors,
Underwood et al. [30] list 12 essential elements for acceptance
in the high-performance computing community. Developer
tools of various forms (specifically including performance
analysis tools) comprise two of their twelve elements.

In order to ease the programmers’ burden, both the research
community and industry have been focusing on the design of

concurrency platforms. A concurrency platform is an abstrac-
tion layer that coordinates, schedules and manages resources,
and provides an interface for programmers to write parallel
programs. A concurrency platform typically supports one or
more parallel programming paradigms and may consist of a
compiler, a runtime system, support tools (e.g., performance
monitor), etc.

In our work, we focus on the class of streaming data
applications. Examples of concurrency platforms that support
the streaming data paradigm include Auto-Pipe [4], Brook [2],
Streamlt [28], Wavescript [19], and Streamware [15] (see [25]
for a survey of older streaming languages). The streaming
data paradigm can be characterized by computation that is
decomposed into isolated kernels (or blocks) with communi-
cation between kernels via explicit channels. Data is therefore
“streamed” from one kernel to another over these channels.
An example application is illustrated in Figure 1. Pseudo-
random numbers are are generated in the RNG block and
divided into two streams by the Split block. The two Walk
blocks perform a random walk solution to Laplace’s equation,
the results of which are passed downstream to the Avg and
Print blocks.
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Fig. 1. An example streaming implementation of a Monte Carlo solution to
Laplace’s equation. Computation is performed within each block, communi-
cation is one-way along edges.
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There are several benefits to authoring applications using
this approach [6]: (1) it is possible to build a library of blocks
that can be re-used; (2) the concurrency platform provides
for the data movement and associated synchronization; (3) the
explicit knowledge of algorithm decomposition available to
the system supports flexible mapping of blocks to compute
resources; and (4) reasoning about the correctness of streaming
data applications is fairly straightforward (approximately on a
par with sequential codes).

Obtaining peak performance is paramount when utilizing
architecturally diverse systems (otherwise there is little gained
from the increased design complexity). Since FPGAs offer
little visibility into the design once deployed, application



authors are left without even the most basic information on
the performance of their application. Traditional software tools
such as gprof [13] and TAU [23] tend to be of marginal
benefit because they are processor-centric and do not support
meaningful metrics for architecturally diverse platforms (e.g.,
processor core — FPGA communication). FPGAs do not offer
native support for performance assessment other than through
simulation, which is too slow to be helpful for complex
designs that process lots of data. Functional debugging tools
like Xilinx’s ChipScope, Altera’s SignalTap, and Synopsys’s
Identify can support limited performance logging. However,
the hardware designer must manually design in the evalua-
tion logic for each performance metric. Adding such logic
is frequently an afterthought at best, resulting in minimal
performance visibility and brittle, error-prone solutions.

To address these concerns, we have created a new perfor-
mance measurement tool, TimeTrial, which enables whole-
sale collection of performance profiles of FPGA-accelerated
streaming data applications. TimeTrial is a runtime perfor-
mance monitor that supports whole-application monitoring
on application-specific systems comprised of processors and
FPGAs, while aggressively minimizing the impact that it has
on the executing application.

With any runtime performance measurement system, there
is a risk of interfering with the application being measured.
To mitigate this potential interference, TimeTrial monitors
applications by aggregating data online, supporting selective
developer-directed profiles, and dedicating computational re-
sources to the runtime monitoring tasks. These practices enable
performance measurements over long executions and real-
world datasets.

This paper presents TimeTrial as incorporated with the
Auto-Pipe [4] concurrency platform, enabling users to pro-
file their streaming data applications by posing performance
questions of the system. For example, a stream profile should
be able to answer questions of the type:

o At what rate is data moving across the link that connects

the RNG block to the Split block?

o Are the data rates balanced between the upper and lower

branches of the application topology?

o What is the occupancy of the queues between each block?

o What fraction of the time is the Avg unable to continue

processing because the queue into the Print block is
full?

o What portion of the pipeline is limiting the achievable

throughput?

o If that bottleneck were resolved, what would be the next

bottleneck?
We will return to each of these questions below, describing
how the TimeTrial performance monitoring system enables an
application developer to learn the answers.

II. BACKGROUND AND RELATED WORK

The TimeTrial language and compiler work with and
complement the Auto-Pipe application development environ-
ment [4]. The Auto-Pipe tool set supports the development

of streaming data applications deployed on architecturally
diverse systems. An application’s topology is described in
the X coordination language [11] and individual block im-
plementations are constructed using languages appropriate
for the target execution platform (e.g., C/C++ for multi-core
processors, VHDL/Verilog for FPGAs). Auto-Pipe has been
used to develop applications over a wide range of fields, in-
cluding astrophysics [29], cryptography [3], and computational
finance [24]. While Auto-Pipe already supports performance
evaluation via simulation [12], performance profiling of exe-
cuting applications is a capability that did not previously exist
in the Auto-Pipe environment.

Performance profiling of multi-threaded applications exe-
cuting on multi-core processors is an active area of research,
in large part due to recent increases in the number of cores
per chip [27]. Stack-pointer tracing and instrumentation for
path profiling are popular approaches. Message logging is
also common in the MPI world [1]. However, techniques for
profiling the performance of parallel applications executing
on multi-core processors combined with accelerators have not
received as much attention.

Analyzing and understanding the performance of a stream-
ing application requires a different approach than that used by
current tools. Profiling tools such as gprof [13] instrument a
binary to log procedure calls. Such instrumentation can add an
unacceptable overhead because the function calls sending and
receiving data are likely to be frequently called, slowing down
the application. gprof treats the portions of the application
deployed on the accelerator as a black box since it has no
support for measuring accelerator internal performance. In
the worst case, gprof will provide an ambiguous picture of
performance while adding unacceptable overhead. Other tools
such as TAU [23] can reduce the overhead of profiling by
throttling and by instrumenting only a subset of functions.
These optimizations reduce overhead but do little to improve
the scope of the performance picture obtained.

A performance-monitoring system for FPGAs has been
developed by Koehler et al. at the Univ. of Florida [16].
This monitoring system is capable of counting events on
arbitrary signals within a VHDL design and reporting these
counts at a configurable frequency to the user. In contrast,
TimeTrial maintains language independence by focusing on
the edges between compute blocks rather than monitoring
interior signals within a block. Second, TimeTrial monitors
both the FPGA and multi-core processor portions of the
deployed application to locate bottlenecks regardless of the
processing resource on which they occur.

The system of Koehler et al. has recently been extended
by Curreri et al. [7] to support FPGA designs that have been
specified in high-level languages (e.g., Impulse C) rather than
hardware description languages such as VHDL. Earlier work
by DeVille et al. [8] explored the design of hardware probes
for performance monitoring purposes in FPGA-deployed ap-
plications.

A performance profiler has also been developed for the
TMD machine developed at the Univ. of Toronto [20]. This



profiler focuses on logging both MPI calls as well as user-
defined computation states. It is designed explicitly to profile
MPI-style communication and computation, sampling events
to reduce trace size. TimeTrial instead uses online metric
computation to reduce performance meta-data volume.

ITI. ARCHITECTURE OF THE TIMETRIAL SYSTEM

TimeTrial is made up of three major parts: the TimeTrial
language, compiler, and agents. Statements in the language in-
struct the compiler “what and where” to measure, the compiler
instruments the streaming application (including processor
cores and FPGAs, if necessary), and the agents collect runtime
statistics, logging them to disk. This section begins with
an overview of the TimeTrial measurement system and then
describes the language, compiler, and agents as integrated with
the Auto-Pipe development environment and the X language.

Figure 2 shows a tandem streaming data application with
TimeTrial instrumentation added. The blocks in the application
are labeled “A” through “E”. The X code fragment that
describes this simple topology is below.

A ->B ->C ->D -> E;

Blocks denoted with a circle have been mapped to a processor
core, and blocks denoted with a square have been mapped to
an FPGA. Associated with each edge is a queue, which buffers
data generated by the upstream block for the downstream
block. These queues, and the associated runtime infrastructure
that performs the data movement between blocks, is the
responsibility of Auto-Pipe. For example, from block A to
block B Auto-Pipe will instantiate a shared-memory buffer,
while from block B to block C Auto-Pipe will invoke the
appropriate low-level mechanisms to move data from software
to the FPGA hardware.

On each computational resource, a TimeTrial agent is
present that monitors the portions of the application deployed
on that resource. The TimeTrial compiler inserts faps into the
communication segments to be monitored, and event streams
are sent to the local agent to aggregate the results during the
run. The FPGA agent sends its aggregated data to the software
agent, which is responsible for combining results from the
software taps as well as the FPGA monitor.

A. TimeTrial Language

TimeTrial implements performance profiling by first ana-
lyzing the X language source code for performance query
expressions and then instrumenting the resulting binaries with
measurement code to collect runtime statistics. These perfor-
mance query expressions, in the form of TimeTrial statements,
are designed to be user friendly (i.e., straightforward in their
meaning) while enabling the compiler to automatically imple-
ment low-impact, full-execution runtime instrumentation. A
proposed language for TimeTrial is published in [5].

In order to minimize the measurement impact, TimeTrial
selectively profiles only the portions of the application that the
developer is interested in. TimeTrial constrains its view to the
communication edges as a way to provide a simple mechanism

for reasoning about performance and staying agnostic to the
underlying implementation language used to build blocks. Tar-
geting communication allows TimeTrial to identify bottlenecks
at the block level. That is, TimeTrial is designed to efficiently
identify one or more blocks that are performance-limiting
during a run. The developer can then focus on optimizing
those blocks and then re-execute the application.

In the TimeTrial language, each statement directly corre-
sponds to added instrumentation on one or more communica-
tion edges. We introduce the language using a few example
queries. To ask the questions “What is the throughput of edge
x?” and “How full is the queue on edge y?”, one could write
the following TimeTrial statements:

measure rate at x;
measure hist occupancy at y;

In both cases, the measure keyword instructs the Time-
Trial compiler that we are asking for a measurement. All
currently supported statements begin with the measure key-
word. rate and occupancy specify the “metric type,”
which tells the compiler which performance metric to im-
plement. Following the at keyword is the “edge label,” the
target communication edge to observe. The second statement
has the optional “aggregation function” hist which tells the
compiler the type of statistical aggregation to perform on the
trace data during runtime. In this case, hist implements a
histogram function on the data, resulting in a histogram of
queue occupancy for that edge.

Currently, the TimeTrial language supports these metric
types (units are given in parenthesis):

e rate: The throughput at which data elements are tran-
siting an edge queue. (transfers per second)

e util: The utilization of a communication edge (a nor-
malized rate). (fraction)

e backpressure: The amount of time spent blocking on
an insertion into a queue. (fraction)

e latency: The amount of time a data element spends in
a queue. (time)

e occupancy: The number of elements in a queue.
(count)

e value: The value of the data elements inserted in a
queue. This is enables functional stream debugging when
combined with the trace aggregation function. (varies,
depending on target edge data type)

The aggregation function is important to the efficiency of the
TimeTrial system since it specifies the degree of data compres-
sion that is to be performed. Instead of the traditional method
of generating a trace for each event on a target and aggregating
data offline, TimeTrial compiles the aggregation function into
runtime code that compresses (in a lossy manner) the event
stream it is observing. This is effective since performance
monitoring, when contrasted with functional debugging, is
generally much more concerned with aggregated metrics as
opposed to individual element values. Since the developer
is able to specify the precise metric and the mechanism to
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application.

summarize that metric, the compiler can implement highly
optimized, low-impact monitoring.

The following aggregation functions are supported:

e min, max: minimum, maximum of metric values

e mean: arithmetic mean of metric values

e hist: histogram of metric values

e sum: sum of metric values

e trace: alog of each metric value

The aggregation function combined with the metric type and
target completely specify where the compiler needs to place
instrumentation into the system.

B. TimeTrial Compiler

The TimeTrial compiler analyzes measure statements to
determine where to insert taps on the queues which make up
the edges between blocks of the streaming application. The
compiler is capable of instrumenting three types of edges:
edges contained entirely in software, edges contained entirely
on an FPGA, and edges from an FPGA to software or from
software to an FPGA. To facilitate data collection and aggre-
gation, the compiler generates code to send the information
gathered from the taps to the software TimeTrial agent.

For edges between software blocks, the compiler generates
code to tap the edges and send the necessary signals to the soft-
ware TimeTrial agent. To allow communication between the
software process running the block and the agent, the compiler
inserts initialization code that opens a communication channel
to the agent and sends the agent start up messages to inform it
which metrics to track and the data aggregation function to use.
Depending on the metric type, the compiler will instrument
the enqueue signal, the dequeue signal, the full signal, and/or
the value enqueued. For example, to measure the rate of an
edge, the enqueue event is tapped. Since the compiler emits
C++ code to instantiate the blocks, the tap takes the form of a
function call immediately before the monitored operation. This
function call sends a message containing the type of event and
a time stamp to the software TimeTrial agent.

Software blocks are often mapped to separate processes. The
queues for edges between these processes are implemented
using shared memory or network sockets. For some metric
types, only one of the processes need communicate with the
software TimeTrial agent. However, for metrics such as queue

An example streaming application mapped onto processor cores and an FPGA. The dotted lines represent TimeTrial instrumentation added to the

occupancy, where both the enqueue and dequeue signals are
required, both processes must communicate with the agent.
Thus, the software TimeTrial agent is contained in a separate
process and the Auto-Pipe processes communicate with the
agent using shared memory queues.

The compiler instruments queues contained on an FPGA
using the FPGA TimeTrial agent [17]. To use the FPGA
agent, the TimeTrial compiler generates VHDL code which
instantiates the agent and taps the necessary queue signals. The
compiler then generates code for the C++ process that controls
the FPGA device to communicate the aggregated statistics
from the FPGA agent to the software agent.

Edges between an FPGA block and a software block are
made up of multiple tandem queues. There is a queue on the
software side, a queue in the FPGA, and queues that reside at
lower levels of the system, including the driver and FPGA bus
interface. To allow visibility into these edges, the TimeTrial
compiler instruments both the queue in software and the queue
on the FPGA in a manner similar to the descriptions above.
The queues that reside at lower levels are inaccessible, so
they are not monitored. Comparing measurements from both
the software and FPGA can give additional insight into the
application’s performance. For example, assume we have an
FPGA block that feeds a software block. If the rate on the
FPGA is high and the rate in software is low, we know that a
queue is filling between the FPGA and software.

C. TimeTrial Agents

The TimeTrial system deploys two types of agents: a
software agent that monitors taps from software portions of
the application and an FPGA agent that monitors the FPGA
portion. Both the software agent and FPGA agent aggregate
event streams from taps over a period and log the results to
disk. In TimeTrial, this period is referred to as a frame and
is a configurable parameter representing either an interval of
time or an event count.

Traditional performance tools such as gprof log or sample
performance over the entire execution. In TimeTrial, setting
the frame size smaller than the execution time will split
the execution into more than one non-overlapping segment
retaining 100% coverage of the run. Figure 3 shows an
example execution with different frame periods. Choosing the



frame period enables the developer to explicitly control how
much time resolution remains in the aggregated performance
meta-data versus the overhead TimeTrial will incur making
measurements. A large frame period will be low overhead but
likely to ‘average-out’ any rare performance events. In this
example, a mean rate of 30 MB/s is recorded. Successively
smaller frame sizes reveal that there are portions of the
execution that perform well and other portions that perform
poorly. This might be cause to investigate the circumstances
around the poorly executing region(s). Note that reducing the
frame period results in a larger number of frames that must
be communicated to the software agent and logged to disk.
Setting the frame period based on event count (instead of time)
is helpful for correlating data-dependent performance events
as they flow through the application.

0 Total Execution Time: 100 s 100
Frame size: 100 s | |
Mean Rate (MB/s): 30
Frame size: 255} t t t
Mean Rate (MB/s): 50 50 1 19
Frame size: 10 s t t t t t t t t t 1
Mean Rate (MB/s): 50 45 60 45 50 1 1 1 20 20

Fig. 3. Illustration of measuring with varying frame periods. Each frame
results in one aggregated metric.

The TimeTrial compiler also instantiates an FPGA agent
on each FPGA device where measurements are to be taken.
Figure 4 shows an overview of the architecture of the FPGA
agent. The tap monitors, on a cycle-by-cycle basis, observe the
event streams on taps and perform the requested aggregation
function over each frame. Currently, there are four different
types of tap monitors supported: activity monitors, latency
monitors, queue monitors and histogram monitors. Activity
monitors count the number of cycles a signal or wire is active
combined with period or size of the frame (whether clock cy-
cles or event occurrences). Activity monitors are typically used
to measure control signals for the communication channel,
giving utilization, rate, and backpressure on a link. Latency
monitors take a time stamp of two events and aggregate the
differences over a frame. Queue monitors measure a queue
occupancy by observing the stream of enqueue and dequeue
events on a target FPGA communication FIFO. This monitor
is invoked when queue occupancy is requested. Histogram
monitors aggregate target data into a histogram of those data
values. This is used for both queue monitors and when a data
value histogram is requested. The architecture is designed to be
easily extensible for additional tap monitors as new language
features are added. After each frame, the FPGA agent returns
the data it has collected over the past frame to software where
it is forwarded to the software TimeTrial agent.

The software TimeTrial agent is a separate process with
which the application processes communicate using shared
memory queues. Figure 5 shows an overview of the architec-
ture of the software agent. When the software agent starts,
it creates a queue in shared memory for each application
process. The agent then polls from these queues in a round-
robin fashion. When each application process starts, the appli-
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Fig. 4. Overview of the TimeTrial agent for the FPGA [17]. The FPGA agent
is a high-speed, parameterized circuit designed to aggregate measurements on
the FPGA.

cation process places start up messages in the shared memory
queue for each measurement at an edge originating from that
process. These start up messages contain the metric types
and aggregation functions to use as well as a unique index
for the measurement. After sending the start up messages,
the application process sends events to the agent associated
with Auto-Pipe edges. These events contain the index of the
measurement, a time stamp, and the event type.

Aggregate Aggregate
Data Data

Log performance metrics by frame
Display Results

Fig. 5. Overview of the software TimeTrial agent. In addition to aggregating
event streams online, the software agent is responsible for logging results
from the FPGA agents to disk.
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Using the metric type and aggregation function, the software
TimeTrial agent is able to derive the requested information
about edge queue events. The metric type informs the software
agent how to interpret the events. For example, the queue
occupancy metric type tells the agent to sort enqueue and
dequeue events by time to determine the queue occupancy after
each event. For queue occupancy, the sort is necessary since
the enqueue and dequeue events may come from different
processes. However, once an enqueue event is matched with a
dequeue event, the agent will discard the events keeping only
the updated queue occupancy. Metric types which only tap one
side of the queue (e.g., rates) do not need to sort events.

The output of the metric function is then fed to the necessary
aggregation functions. For example, if the “mean” aggregation
function were requested for the occupancy of a queue, the



agent would compute the mean of the stream of numbers
returned from the metric function. The mean is tracked for
each frame and reported at the end of the frame. The histogram
aggregation function, on the other hand, uses the stream of
numbers from the metric function as the bin number and
accumulates time duration in the bin. For occupancy, this gives
the amount of time that was spent at each queue occupancy.
The histogram is reported at the end of a frame.

The software TimeTrial agent is also responsible for record-
ing measurements from the FPGA agent. To do this, the
process controlling the FPGA device communicates start mes-
sages to the software agent as is done for software queues.
However, rather than communicating individual events as is
done for software, the FPGA agent sends a message to the
controlling process at the end of each frame. The controlling
process then forwards the message to the software agent. Since
the FPGA agent handles the data aggregation, the software
agent simply records the data returned from the FPGA agent.

The output of the software TimeTrial agent is a file contain-
ing the aggregated data. Once the software TimeTrial agent has
recorded the data to disk, the results can be read into the user’s
graphing software of choice. For instance, the graphs in this
paper were produced using Mathematica.

IV. USING TIMETRIAL

We will illustrate the use of TimeTrial with an example
application, a Monte Carlo solver for Laplace’s equation.
Laplace’s equation is a second-order partial differential equa-
tion (PDE) [26] that has several uses, including modeling
stationary diffusion (such as heat) and Brownian motion. For
heat, given the temperature at the boundaries of an object, so-
lutions to Laplace’s equation provide the interior temperatures
at equilibrium.

Pu  OPu 0
ox2  oy?

The ease of solving Laplace’s equation depends on the
nature of the boundary conditions. An analytic solution exists
for simple boundary conditions, however, for many boundary
conditions, no analytic solution exists and numerical solutions
are needed [10]. There are several approaches for numerical
solutions. One approach is Gauss-Seidel iterations [26], which
converge quickly but require that the complete grid be stored
in memory. Another method is Monte Carlo simulation, which
is provably correct [22] but converges slowly. Nevertheless,
this method is useful if a small number of interior points are
needed. This is because the Monte Carlo method does not
require storing the entire grid, since the grid is implicit, and
only those points that are of interest need be computed.

Figure 6 shows the pipeline topology of an Auto-Pipe im-
plementation of a Monte Carlo solver for Laplace’s equation.
The labels within the blocks indicate the block function, and
the labels above identify the individual blocks. Edge labels are
also shown in the figure.

The application works as follows. Pseudo-random numbers
are generated (using the Mersenne twister algorithm [18])
in block mt. Block s1 splits the stream of pseudo-random

wl

mt s1 €2

/ Walkﬁl‘ al out
RNG FE5(split Avg 23 Print
\Z\WZ /'
e2 Walk e32

Implementation of Monte Carlo solver for Laplace’s equation.

Fig. 6.

numbers for use by two copies of a Walk block (called w1l and
w2) that perform a random walk executing the Monte Carlo
solution [22]. Results from blocks w1 and w2 are combined in
the Avg block al and written to disk in block out. Greater or
fewer Walk blocks are straightforwardly deployed with larger
or smaller Split and Avg trees (e.g., Figure 7 illustrates 4
Walk blocks).

Fig. 7. Application topology for 4 independent random walks.

For the example executions used here, a 2-D grid was fixed
at size 100 x 100 and the boundary conditions were set to a
square containing the grid. The temperature at the boundary
was set to O for three sides (top, right, and bottom) and 100
for the fourth side (left). One thousand random walks were
performed at each grid coordinate, evenly divided across the
Walk blocks. The output of the application gives a 100 x
100 grid of temperatures. A plot of the output using colors to
represent temperatures (blue being 0 and red being 100) yields
the image of Figure 8.

Fig. 8. Output from example 2-D temperature surface.

The experiments that follow are all executed on a system
that has 2 six-core AMD processors (for a total of 12 cores)
and an FPGA board connected via a PCI-X bus. Unless
otherwise described, each block is mapped to a distinct core



(using processor affinity) and the software TimeTrial agent is
mapped to a core without an application block.
We now reconsider the performance questions posed in the

introduction. The first question was:

At what rate is data moving across the link that

connects the RNG block to the Split block?
TimeTrial can answer this question via a straightforward
measure statement:

measure rate at el;

which generates the output shown in Figure 9. The figure
provides a box-and-whisker plot of the data transfer rate for
each frame (the frame period is 1 second for all of the example
runs in this paper). The median bar in the box is labeled on
the graph (here, 2.4 Mtransfers/s), the 1st and 3rd quartiles are
the top and bottom of the box, the whiskers indicate minimum
to maximum (excluding outliers), and any outliers (defined as
beyond 1.5x the inter-quartile range) are indicated by points
on the graph. TimeTrial expresses throughput in terms of data
element transfers per second. On edge e1, a data element is
a single random number.
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Fig. 9. Data rate across edge el.

The second question posed in the introduction was:
Are the data rates balanced between the upper and
lower branches of the application topology?
To answer this question, we ask for the data rates into the two
Walk blocks:

measure rate at e2l;
measure rate at e22;

These queries generate output of the same form as Figure 9,
from which we can confirm that the data rates are reasonably
balanced at 1.2 Mtransfers/s. (Note that to conserve space we
will not reproduce the graphs generated by all of the example
measure statements that are described.)
The third and fourth questions:
What is the occupancy of the queues between each
block?
What fraction of the time is backpressure being
asserted from the Print block to the Avg block?
are both supported by measure statements in the language:

measure hist occupancy at el;
measure hist occupancy at e21;
measure hist occupancy at e22;

measure
measure

hist occupancy at e31;
hist occupancy at e32;
hist occupancy at e4;
backpressure at e4;

measure
measure

and the histogram queries yield the graphs in Figure 10. In
the histograms, the occupancy (horizontal axis) is in units of
queue slots (data elements) and the percent time (vertical axis)
is the time-weighted fraction of the total execution at each
occupancy. The average backpressure at e4 is always 0, so
we do not show that graph.

These queue occupancy histograms enable us to answer
question five:

What portion of the pipeline is limiting the achiev-
able throughput?
by observing that all of the queues downstream of the Split
block are empty almost all of the time while the queue
upstream of of the Split block is full almost all of the time.
This is a strong indication that the Split block is the rate
limiting element in the pipeline.

Our suspicions are confirmed when we replace the original
implementation of the Split block with a new implemen-
tation that is more efficient. The efficiency is increased by
moving data through the block in larger chunks. With this new
Split block, the median rate has increased to 8.6 Mtransfer-
s/s across edge el and the histograms of queue occupancies
on edges el, e21, and e22 are shown in Figure 11. The
histograms for edges e31, 32, and e4 did not appreciably
change and they are not replotted.

These plots both confirm the hypothesis that the Split
block was the initial throughput bottleneck (since replacing
it with a faster implementation provided a greater than 3x
performance gain) and enable us to answer question six:

If that bottleneck were resolved, what would be the
next bottleneck?

Now, the queues into the Walk blocks are non-empty and the
queues out of the Walk blocks are empty. This implies that
the random walks are now the throughput limiting elements
(i.e., the next bottleneck).

We can explore the dynamics of the queue leading into
Walk block wl by plotting the queue occupancy histogram
as a function of time. This is shown in Figure 12. In the
perspective presented in the figure, time (indicated by frame)
progresses into the page. At the early portion of the run the
queue is full, and as the run progresses the occupancy falls
off (although never becoming empty). This timeline illustrates
how the Split block maintains constant data rate at its two
outputs, even if the consumption by the two Walk blocks isn’t
completely balanced, leading to a decrease in queue occupancy
over time for Walk block wl.

Given that the Walk blocks have been shown to be
the current throughput bottleneck, we can explore further
performance improvement by both altering the application’s
topology and exploiting the available architectural diversity in
the execution platform. The execution platform has 12 cores
and an FPGA co-processor, so the next implementation we
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Fig. 12. Histogram of queue occupancy over time for edge e21 (input to
block wl).

will explore uses 8 cores for 8§ Walk blocks, 2 cores for
Split blocks, 1 core for the Avg and Print blocks, and
reserves one core for the software TimeTrial agent. In addition,
the RNG block is deployed on the FPGA. This illustrates the
flexibility enabled by the Auto-Pipe development environment.
If an FPGA implementation is available for a block, deploying
the block on the FPGA only requires altering the mapping
statements in the X language specification of the application.

The throughput rate coming out of the RNG block into
the first Split block is now 33 Mitransfers/s, a 3.8-fold
performance improvement over the previous execution, which



had only two Walk blocks. The queue occupancies of this
edge (both on the hardware side of the bus and the software
side of the bus) are shown in Figure 13. The fact that they
are both continually at capacity indicates that the RNG block
is not limiting the pipeline throughput, and causes us to pose
the question as to whether the FPGA co-processor is actually
benefiting the application performance.
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Fig. 13. Histograms of hardware and software queue occupancies for edge
el (output of the RNG block).

We can explore the above question by mapping the RNG
block to one core and assigning all of the Split blocks to a
single core. Figure 14 shows the throughput rate and Figure 15
shows the queue occupancy out of the RNG block for this run.
As can be seen in the graphs, the throughput is virtually the
same and the queue occupancy is still quite high (indicating
that the software RNG block has sufficient performance to keep
up with the rest of the pipeline (i.e., the FPGA does not benefit
the application’s performance).
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Fig. 14. Data rate across edge el (output of the RNG block).

For this run, the Split blocks are once again the perfor-
mance bottleneck. This is confirmed in Figure 16. Here, the
queue occupancy histograms for all of the edges going into
the eight Walk blocks are shown, and all eight queues have
significant time during which they are empty.

While in this case (i.e., the RNG block alone on the FPGA)
the architectural diversity does not improve the performance
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block).

Histogram of queue occupancy for edge el (output of the RNG

of the application, this fact was not at all clear prior to the
execution and measurement of performance. As with any em-
pirical measurement, one must have access to the artifact being
measured, and the Auto-Pipe environment facilitates quick
transitions between block to compute resource mappings,
greatly simplifying the task of understanding the performance
implications of a wide variety of deployment options.

To assess the overhead that TimeTrial introduces, the exper-
iments described above were executed both with and without
the TimeTrial measurements present. The worst case increase
in execution time was less than 2%, providing strong evidence
that TimeTrial is effective at having a low impact on the
performance of the measured application.

V. CONCLUSIONS AND FUTURE WORK

The TimeTrial performance monitor provides low-impact
assessment of streaming data computations guided by user in-
put. The TimeTrial language enables users to straightforwardly
describe the measurements that are desired, and the associated
compiler and TimeTrial agents instrument and monitor the
executing application.

TimeTrial imposes low overhead on the executing applica-
tion, with the execution times for the experiments reported
here being impacted by less than 2%. This is accomplished
by ensuring that the software agent is allocated to a distinct
processor core (i.e., not co-located on a core that is executing
application code). In addition, the volume of performance
meta-data that crosses the chip boundaries between FPGA
and multi-core processor is limited by the aggressive data
compression that can be performed by the FPGA agent.

While TimeTrial is complementary to the Auto-Pipe de-
velopment environment, its design is not limited to Auto-
Pipe. Any concurrency platform that supports the streaming
data paradigm can use TimeTrial, as long as edges can be
instrumented in the concurrency platform’s runtime system.

Our continuing work is focused on enabling TimeTrial to
reason more completely about application edges that cross
platform boundaries. While the current TimeTrial monitors the
queues at both ends of the edge (both in hardware and in
software), we are investigating techniques that will allow the
user to treat the edge (and its associated collection of physical
queues) as a single virtual queue. This would have the benefit
of further simplifying application performance understanding
for users of TimeTrial.
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