Crossing Boundaries in TimeTrial: Monitoring
Communications Across Architecturally Diverse
Computing Platforms

Joseph M. Lancaster
Joseph G. Wingbermuehle
Jonathan C. Beard

Roger D. Chamberlain

Joseph M. Lancaster, Joseph G. Wingbermuehle, Jonathan C. Beard, and
Roger D. Chamberlain, “Crossing Boundaries in TimeTrial: Monitoring
Communications Across Architecturally Diverse Computing Platforms,” in
Proc. of Ninth IEEE/IFIP International Conference on Embedded and
Ubiquitous Computing, October 2011, pp. 280-287.

Dept. of Computer Science and Engineering
Washington University in St. Louis

2011 Ninth IEEE/IFIP International Conference on Embedded and Ubiquitous Computing

Crossing Boundaries in TimeTrial: Monitoring Communications Across
Architecturally Diverse Computing Platforms

Joseph M. Lancaster, Joseph G. Wingbermuehle, Jonathan C. Beard, and Roger D. Chamberlain
Dept. of Computer Science and Engineering, Washington University in St. Louis
{lancaster,wingbej,jbeard,roger} @ wustl.edu

Abstract—TimeTrial is a low-impact performance monitor that
supports streaming data applications deployed on a variety
of architecturally diverse computational platforms, including
multicore processors and field-programmable gate arrays. Com-
munication between resources in architecturally diverse systems
is frequently a limitation to overall application performance. Un-
derstanding these bottlenecks is crucial to understanding overall
application performance. Direct measurement of inter-resource
communications channel occupancy is not readily achievable
without significantly impacting performance of the application
itself. Here, we present TimeTrial’s approach to monitoring
those queues that cross platform boundaries. Since the approach
includes a combination of direct measurement and modeling, we
also describe circumstances under which the model can be shown
to be inappropriate. Examples with several micro-benchmark
applications (for which the true measurement is known) and an
application that uses Monte Carlo techniques to solve Laplace’s
equation are used for illustrative purposes.

[. INTRODUCTION

TimeTrial is a performance monitoring system optimized for
streaming data applications deployed on architecturally diverse
platforms [13]. TimeTrial augments the Auto-Pipe application
development environment [4], [6] which supports both em-
bedded [21] and high-performance [3] computing across co-
designed, architecturally diverse platforms including multicore
processors and field-programmable gate arrays (FPGAs).

Streaming data applications are characterized by discrete
compute kernels (or blocks) that communicate via explicitly
declared channels. Figure 1 shows an example of a signal-
processing streaming application with three major stages. In
stage 1, a sensor (e.g., a gamma ray telescope [22]) produces
data that is split up and sent to parallel processing pipelines
in stage 2. Each pipeline performs some functions on the
data, which are merged in stage 3. Finally, the results are
all compared and stored to disk. Tyson et al. [21] describe the
implementation of this application using FPGAs to execute the
computationally expensive stage 2 and multicore processors
for stages 1 and 3. Languages that directly support streaming
applications include Brook [2], Streamlt [20], Streams-C [8],
and X/Auto-Pipe [6].

Convert DeconvolveMeasure
Read " .
S -
ConvertDeconvoIveMeasu re)

Staée 1

Merge

Calc. Store
Moment| " Result|

Staée 3

Staée 2

Fig. 1. An example embedded, streaming application from computational
astrophysics [21].

978-0-7695-4552-3/11 $26.00 © 2011 IEEE
DOI 10.1109/EUC.2011.26

280

The TimeTrial performance monitor instruments streaming
data applications that are deployed on a combination of
multicore processors and FPGAs. Performance queries (spec-
ified using the TimeTrial language [14]) are translated into
instrumentation infrastructure that is deployed as part of the
Auto-Pipe runtime system. Examples of performance queries
might include:

o What is the mean throughput rate from the Convert

block to the FFT block?

o What is the queue occupancy of the queue deployed be-

tween the FFT block and and the Deconvolve block?
Note that the Auto-Pipe runtime system deploys a FIFO queue
associated with each communication channel.

While the answer to the first question above helps in-
form the developer of the pipeline’s overall throughput (mea-
sured at a given point in the pipeline), it is answers to
queries like the second question that help determine which
block is the throughput bottleneck. If the queue upstream of
Deconvolve is mostly full and the queue downstream is
almost always empty, we can conclude with some confidence
that Deconvolve is a rate-limiting block in the pipeline.

TimeTrial supports the notion of performance “metrics” that
are directly monitored (e.g., throughput rate, queue occupancy)
and a rich set of aggregation functions (e.g., min, max,
mean, histogram) that enable aggressive data reduction on the
monitored metrics. The aggregations are computed over user-
specified intervals, called frames, that preserve time-dependent
behavior at the time resolution of the frame period.

The automated implementation of the instrumentation to
measure metrics and the logic to perform aggregation are
described in [14] for communication channels that are within
a single compute resource (e.g., the queue upstream of
Deconvolve, which is deployed on an FPGA). Problems
arise when the communication channel crosses platform
boundaries, such as the link from the IFFT block to the
Measure block. In this case, a portion of the queue is on the
FPGA, a portion of the queue is comprised of buffers asso-
ciated with whatever low-level communication mechanism(s)
are used to move data between the FPGA and the processor
(e.g., a PCIe bus or something similar), and a portion of the
queue is in the processor’s memory. We call a queue that
crosses platform boundaries a virtual queue.

Measuring the occupancy of this virtual queue is not simply
a matter of instrumenting the enqueue and dequeue operations.
To perform the aggregation function(s), both enqueue and
dequeue events must be known on a common platform, which

IEEE
computer
® psouety

necessitates moving either the enqueue events from the FPGA
to the processor or the dequeue events from the processor to
the FPGA. Neither of these options is attractive, since a large
number of events implies a large data volume (of performance
meta-data) must share the processor-FPGA interconnect (such
as the PCle bus example above).

In this paper, we describe TimeTrial’s approach to dealing
with virtual queues, queues that cross platform boundaries,
while preserving the low-impact nature of the performance
monitoring that is characteristic of TimeTrial. Example mea-
surements of virtual queues will be compared to ground truth
(precise knowledge of the quantity being measured) collected
from the micro-benchmark application itself. In addition, we
discuss the circumstances where the approach described here
is inappropriate, and how users of TimeTrial might come to
understand when that is the case. Finally, we apply the ap-
proach to measurements of an application that solves Laplace’s
equation using Monte Carlo methods.

II. MONITORING VIRTUAL QUEUES

The direct measurement of communication channels (and
their associated queues) that cross platform boundaries is
incompatible with the notion of low-impact monitoring. While
some metrics of interest, such as throughput rate, can be
effectively measured at one end of the channel or the other,
other metrics, such as queue occupancy, require information
from both the head and the tail of the queue.

TimeTrial’s approach to virtual queue monitoring is to
instrument what it can and use a performance model of the
underlying system to infer what it cannot directly measure,
estimating the information that is missing. As such, it is
important not only to provide the performance quantities that
were estimated, but also to provide guidance as to the quality
of the estimates. In what follows, we will focus on querying
the occupancy of virtual queues. It is anticipated that the same
techniques will be similarly effective for other metrics that
require detailed event information across platform boundaries
(e.g., latency through virtual queues); however, this is left
for confirmation in future work. It is clearly true for some
aggregated metrics such as mean latency, which is directly
related to mean occupancy via Little’s Law.

As defined here, virtual queues are comprised of several
constituent components, all chained together to comprise the
communications channel between two compute blocks. For
a channel that moves data between a multicore processor
and an FPGA, the components will include buffers in user
space on the processor, kernel buffers on the processor, a
physical bus that transfers the data to the FPGA (e.g., PCle),
buffers in the DMA engine on the FPGA card, and application
buffers deployed (by the Auto-Pipe runtime system) on the
FPGA. While many of these constituent components of the
communications channel are opaque (i.e., they cannot be
directly monitored by TimeTrial), the two components at either
end of the chain (comprising the head of the queue and the
tail of the queue) are visible to TimeTrial and can therefore
be monitored. Whenever a user requests the occupancy of a

281

virtual queue, TimeTrial deploys monitors for the head and
tail sub-queues for which it has visibility.

A. Approach to Virtual Queue Occupancy

To measure the occupancy of a queue over time, one
can record a series of inter-insertion and inter-departure time
stamps at the head and tail of a queue, respectively. The
queue can then be “replayed” using a simple simulation based
on this event trace. Practically, this approach is useful for
queues that have small volumes of data moving through them.
However, the amount of trace data that needs to be stored
quickly becomes burdensome as the data volume approaches
TimeTrial’s ability to store the event trace. This problem
becomes particularly acute on FPGA platforms, since there
is very limited buffering on the FPGA to store events.

For regular queues (i.e., those that reside entirely on a
single compute resource), TimeTrial monitors the insertion and
removal events and aggregates these to a histogram (or some
other requested function) of queue occupancy on-line. For
virtual queues, access to the insertion or removal event trace is
impractical since they must be communicated across platform
boundaries. This would likely overwhelm the communication
bus between these resources for many applications causing
unwanted performance interference.

Instead, TimeTrial recreates the queue occupancy through
an empirically-driven, stochastic, discrete-event simulation.
TimeTrial measures the time between each insertion into
the queue and between each removal from the queue. Both
streams of delta time values are then aggregated on-line into
an inter-insertion time histogram and an inter-departure time
histogram. These histograms are then used to model an arrival
process and a departure process from the virtual queue. By
sampling from the histograms, a stochastic discrete-event sim-
ulation is performed which samples from these distributions
to “replay” the virtual queues over time.

TimeTrial performs aggregations over a frame. This pro-
duces one set of inter-transfer time histograms per frame.
Having more than one histogram allows for the stochastic
simulation to be non-stationary, that is, the distributions change
over time. Hence, the measurements reflect changes in appli-
cation performance over the course of its execution.

There are two modeling assumptions that are present in the
stochastic simulation that warrant consideration. First, when
replaying the virtual queue dynamics the stochastic simulator
is assuming that the virtual queue acts as an ideal queue
(e.g., insertions at some time ¢ are immediately available for
removal at time ¢). This assumption presumes there is no
inherent latency present in the underlying implementation of
the communications channel.

Second, the stochastic simulation makes the assumption
that the insertion and removal processes are independent
and identically distributed (iid). Significant auto-correlation in
either process, and/or cross-correlation between the processes,
constitute another potential source for error.

If one or more of these modeling assumptions is untrue for
the application being executed, there is a reasonable chance

that the stochastic simulation predictions for the occupancy of
the virtual queue will diverge from the measured occupancy
of the sub-queues at the head and the tail of the virtual queue.
This suggests an approach for performing a sanity check on
the model’s predictions. If the predicted queue occupancies
do not align with the measured occupancies of the visible
sub-queues, the model is not to be trusted. Note that if the
model predictions and the measured sub-queue results do
match, that is no proof that the model predictions are correct.
However, when there is not a match, it is clear that the model’s
predictions cannot be trusted.

In summary, the procedure for responding to a query that
asks for the occupancy of a virtual queue is as follows:

1) Instrument the ingress point (tail) of the queue and its
associated sub-queue (that is visible to TimeTrial) on
the source computational resource and the egress point
(head) of the queue and its associated sub-queue (that
is visible) on the destination computational resource.
Execute the application, recording a histogram of the
inter-insertion times at the tail of the queue and a
histogram of the inter-departure times at the head of the
queue. Also record occupancy histograms of the sub-
queues at the head and tail.

Using the inter-insertion time and inter-departure time
histograms to drive the pseudo-random number genera-
tor distribution, perform a stochastic discrete-event sim-
ulation, predicting the occupancy of the virtual queue.
Compare the stochastic simulation predictions with the
measured sub-queue occupancy distributions.

If the comparison of step 4 succeeds, report the occu-
pancy of the virtual queue to the user.

If the comparison of step 4 fails, one or more of
the stochastic simulation model assumptions are not
true for the application, and the stochastic simulation’s
predictions should not be trusted.

2)

3)

4)
5)

6)

B. Assessment

We assess the above described approach to understand-
ing the dynamics of a virtual queue through the use of
several micro-benchmark applications. These applications are
designed to either: (1) have a known queue occupancy by
construction; or (2) effectively record the queue occupancy
during execution. Either way, we know ground truth and can
therefore effectively assess the model.

The family of micro-benchmarks that are used are designed
to emulate the queue activity in a traditional queue-server
combination (i.e., queueing station) from queueing theory [11].
Figure 2 illustrates a single-stage queueing station that in-
cludes an arrival process from the left (that delivers “jobs”
into the system with mean arrival rate \), a FIFO queue, and
a service process on the right (that services “jobs” from the
queue with mean service rate p).

For our purposes, a “job” will be represented by a single
data element (8 bytes in size), and the distribution of the arrival
process and the service process will either be Markovian (i.e.,

282

A —>

@

Single-stage queueing station.

Fig. 2.

exponential inter-arrival and/or service times) or deterministic
(i.e., constant inter-arrival and/or service times).

The first micro-benchmark emulates the queue activity in a
classic M /M /1 queueing station [11]. In this notation, the first
M denotes a Markovian arrival process, the second M denotes
a Markovian service process, and the 1 denotes a single server.
Figure 3 shows the Auto-Pipe micro-benchmark application,
where the source block is acting as the arrival process (with
pseudo-random numbers drawn from an exponential distribu-
tion, mean 1/, provided by the left-most PRNG block). The
server block is acting as the server (with pseudo-random
numbers drawn from an exponential distribution, mean 1/p,
provided by the second PRNG block). The queue shown on the
edge between source and server is the queue of Figure 2.
Note that there are queues on the other application edges as
well, they are simply not drawn in the figure.

PRNG
A

PRNG

V]
Fig. 3. Micro-benchmark application that mimics queue activity of the single-
stage queueing station.

—

source

—

server

— record

To enable playback of true queue occupancy, the data
value delivered from source to server contains the inter-
insertion time between two insertion events on the queue. The
data values delivered from the server block to the record
block include both the above inter-insertion time and the inter-
departure time experienced at the server block. This stream
of data enables us to recreate the actual dynamics of the queue
via a trace-driven simulation after the run has completed.
This trace-driven simulation provides our best understanding
of ground truth (i.e., what really happened in the queue).

Due to potential confusion that might result from our use
of two different simulations, each for a distinct purpose, we
will use the following terms in the discussion below.

o Stochastic simulation refers to the simulation model intro-
duced in Section II-A that forms the basis for TimeTrial’s
predictions of queue occupancy. This simulation will be
utilized each time a user requests TimeTrial to measure
the occupancy of a virtual queue.

Trace-driven simulation refers to the simulation intro-
duced in the previous paragraph that uses trace informa-
tion recorded by a micro-benchmark application which
represents ground truth for the inter-insertion and inter-
departure times of the virtual queue. This simulation is
only available if the application records these time traces.

The M /M /1 micro-benchmark was deployed on 2 proces-
sors (the source and its random number generator on one
processor, the server and its random number generator on
the other) and the queue in question was instrumented using
TimeTrial, asking for a histogram of the queue occupancy.
The utilization of the queueing server for this run, p = A/
was set to 0.9. Figure 4 shows two versions of the queue
occupancy in this micro-benchmark execution: (1) the trace-
driven simulation result from the micro-benchmark output; and
(2) the measured value from TimeTrial. The obvious alignment
of these results simply indicates that the micro-benchmark is
doing what we expect it to do and TimeTrial is readily capable
of instrumenting queues that reside entirely on one compute
resource (in this case a multicore processor chip).

25
20k —+ Simulation]
b - Measurements
= 15 B
3
o)
=% 10 il
5 4
oL L, iR O,
0 10 20 30 40 50 60 70
Occupancy

Fig. 4. Queue occupancy in M /M /1 micro-benchmark deployed in software.

The above micro-benchmark was redeployed on an FPGA
(all blocks except record) and the experiment repeated (this
time with p = A/pu = 0.8) giving the results in Figure 5.
Again, the trace-driven simulation results and the measured
results from TimeTrial are in close agreement.

40 —
é T+ Simulation
- Measurements]
=
Q
o 4
S
a
L
30 40 50 60
Occupancy
Fig. 5. Queue occupancy in M/M/1 micro-benchmark deployed in
hardware.

Next we will illustrate the approach using a mapping that
includes a virtual queue. The server block is mapped to an
FPGA and the remaining blocks are all mapped to processor

283

cores. Figure 6 shows the queue occupancy of the virtual queue
that crosses the processor-to-FPGA boundary based upon the
trace-driven simulation that represents ground truth. Figure 7
shows TimeTrial’s estimate of the queue occupancy based on
the stochastic simulation described above. It is obvious by
comparison with Figure 6 that the actual queue occupancy
is significantly different from TimeTrial’s estimate. Clearly,
TimeTrial needs a better model.

1.0 :
i
08l R]
!
<
- 06F .".:..5' i
= oo .
i
& 04 . :
-
02+ ; & B
0.0k - LTS o = W

200 400 800 1000 1200

Occupancy

Fig. 6. True queue occupancy in M /M /1 micro-benchmark with software-
to-hardware virtual queue.

507
40

30

Percent

40 60

Occupancy

80 100

Fig. 7. Modeled queue occupancy in M/M/1 micro-benchmark with
software-to-hardware virtual queue.

III. INTERCONNECT BUS MODEL

Guiding the consideration of a more robust model are the
two modeling assumptions described in Section II-A: (1) the
existence of an ideal queue, and (2) iid insertion and removal
processes. Since the chosen micro-benchmark matches the
second assumption (i.e., its inter-arrival time distribution and
its service distribution are both iid), we next investigate a more
robust model of the underlying communications channel that
implements the virtual queue.

The physical system that we are using consists of a two-
socket motherboard that contains a pair of AMD multicore
chips and a Xilinx Virtex-4 FPGA on a PCI-X bus. If we treat
the bus as a “server,” in the sense of a queueing model, we
can extend the model of the communications channel into the

two-stage tandem queueing network illustrated in Figure 8.
Here, the first server (with constant service rate pp and a
deterministic service time distribution) models the bus and
the second server (with mean service rate) models the
downstream compute block. The stochastic simulation can
then “replay” the activity in the virtual queue by simulating

the tandem queueing network.

Two-stage tandem queue.

A —

Fig. 8.

In this system, data to be moved across the PCI-X bus is
buffered (by the low-level system software) until a minimum
bulk transfer size is reached, at which point a bulk DMA
transfer moves the data across the bus. This property of the
communication channel can be readily reflected in the tandem
queueing network model by ensuring that the first server
(representing the PCI-X bus) performs bulk transfers. In the
stochastic simulation model, it allows data to buffer in the
upstream queue until BulkSize data elements are queued,
at which point it “services” them all together, removing
them from the upstream queue and inserting them into the
downstream queue. In this model, the instantaneous occupancy
of the virtual queue consists of the occupancy of the upstream
queue of the bus server plus the occupancy of the downstream
queue of the bus server plus the number in service in the bus.

Returning to the M/M/1 micro-benchmark whose true
virtual queue occupancy histogram is shown in Figure 6, the
queue occupancy histogram that TimeTrial predicts using the
stochastic simulation based on the tandem-queue model is
shown in Figure 9. These two figures are in reasonable agree-
ment with one another. In addition, the sub-queue histograms
directly measured by TimeTrial of the head and tail of the
virtual queue (not shown) are also in agreement with Figures 6
and 9.

1.0
0.8+ v 1
:é |
o 06[s 1
H
=
15} .
& 04t H :
H 3
i A
02 ! 1
3
J i
0.0 ! ‘ ‘ . |
0 200 400 600 800 1000 1200
Occupancy
Fig. 9. Modeled queue occupancy in M/M/1 micro-benchmark with

software-to-hardware virtual queue, using tandem queue model.

We next assess the appropriateness of the tandem-queue
model on a few additional micro-benchmarks. Figure 10 shows

284

the results of a trace-driven simulation giving true queue
occupancy for an M /M /1 micro-benchmark with the mapping
reversed to give a hardware-to-software virtual queue. (Here,
source and its associated random number generator are
mapped to the FPGA.) Figure 11 shows the results of the
stochastic simulation using the tandem-queue model. As with
the software-to-hardware virtual queue, there is reasonable
agreement between the modeled queue occupancy and the true
queue occupancy.

0.04
0.03] b
= [
8 0.02f]
5 [
[=%}
001}]
0.00k L]
0 5000 10000 15000 20000 25000
Occupancy

Fig. 10. True queue occupancy in M /M /1 micro-benchmark with hardware-
to-software virtual queue.

0.04 —
003}]
= .
S 0.02- -
5 .
o
0.01- ,
0.00® LI
0 5000 10000 15000 20000 25000
Occupancy
Fig. 11. Modeled queue occupancy in M /M /1 micro-benchmark with

hardware-to-software virtual queue.

Next we explore the sensitivity of the model to the dis-
tribution of the service process. In this micro-benchmark,
the server block is set to perform dequeue operations
at a constant rate. This micro-benchmark corresponds to
an M/D/1 queueing station, where the arrival process is
Markovian and the service process is deterministic. Figure 12
presents the trace-driven simulation results that indicate true
queue occupancy for a software-to-hardware virtual queue for
this micro-benchmark (i.e., source is mapped to a processor
core and server is mapped to an FPGA). Figure 13 presents
the stochastic simulation model of the same micro-benchmark.

As is clear in the figures, the shape of the virtual queue
occupancy is well represented in the stochastic simulation
model. As with the previous micro-benchmarks, the occupancy

0.7

0.5F

Percent

031

0.2

0.1p

\

0.0 . . .
2000 2500

0 500 1000 1500
Occupancy

Fig. 12. True queue occupancy in M /D /1 micro-benchmark with software-
to-hardware virtual queue.

0.7
0.6F]

i

0sf

04F

Percent
oo

03F
02l H

01f

.
.
.
.
.
.
A
A

2000

0.0k
0 500

1000 1500 2500

Occupancy

Fig. 13. Modeled queue occupancy in M/D/1 micro-benchmark with
software-to-hardware virtual queue.

is strongly influenced by the bulk transfer characteristics of the
bus, so much so that it does not even qualitatively resemble
the theoretically expected queue occupancy for an M/D/1
queueing station at all.

In each of the above micro-benchmark examples, the

stochastic simulation model does a reasonably good job of

indicating the general properties of the occupancy of the
virtual queue. However, there are instances where the stochas-
tic simulation model will fail to accurately represent the
true occupancy of the virtual queue. An example of this is
illustrated in Figures 14 to 16, which show the predicted
queue occupancy from the stochastic simulation (Figure 14),
the measured sub-queue occupancy from the hardware side
(Figure 15), and the measured sub-queue occupancy from
the software side (Figure 16) for a micro-benchmark with a
hardware-to-software virtual queue. In this case, the source
random number stream had significant auto-correlation (i.e.,
the source was not iid).

It is clear from the figures that the sub-queue occupancies
measured at the head and the tail of the virtual queue do
not agree with the overall queue occupancy predicted by the
stochastic simulation model. While for this particular instance
the reason for the lack of agreement is well understood (a non-
iid source), in general the use of the head and tail sub-queue

285

0 5000 10000 15000 20000
Occupancy
Fig. 14. Modeled queue occupancy in correlated micro-benchmark with
hardware-to-software virtual queue.
100 T
80
£ 60 1
g]
[]
401 1
20}
0 50 100 150 200 250
Occupancy

Fig. 15. Hardware sub-queue occupancy in correlated micro-benchmark with
hardware-to-software virtual queue.

occupancies serves as a check on the appropriateness of the
stochastic simulation model, but does not necessarily give a
reason when there isn’t agreement.

IV. SOLUTION TO LAPLACE’S EQUATION

Laplace’s equation is a second-order partial differential
equation (PDE) [19] that has several uses, including modeling
stationary diffusion (such as heat) and Brownian motion. For
heat, given the temperature at the boundaries of an object, so-
lutions to Laplace’s equation provide the interior temperatures
at equilibrium.

Pu 0*u
ox?2 = Oy?

The ease of solving Laplace’s equation depends on the
nature of the boundary conditions. An analytic solution exists
for simple boundary conditions, however, for many boundary
conditions, no analytic solution exists and numerical solutions
are needed [5]. There are several approaches for numerical
solutions. One approach is Gauss-Seidel iterations [19]. This
method converges quickly, but it requires that the complete
grid be stored in memory. Another method is Monte Carlo sim-
ulation. This technique is provably correct [17], but converges
slowly. Nevertheless, this method is useful if a small number
of interior points are needed. This is because the Monte Carlo

=0

Percent

5000 10000 20000

Occupancy

15000

Fig. 16. Software sub-queue occupancy in correlated micro-benchmark with
hardware-to-software virtual queue.

method does not require storing the entire grid, since the grid
is implicit, and only those points that are of interest need be
computed.

Figure 17 shows the topology of an Auto-Pipe implemen-
tation of a Monte Carlo solver for Laplace’s equation. The
pseudo-random numbers from the PRNG block are distributed
to 8 independent blocks performing random Walks executing
the Monte Carlo solution [17]. The results are combined in
the Avg blocks and are recorded in the Print block.

Fig. 17.
using Monte Carlo methods.

Topology of Auto-Pipe application that solves Laplace’s equation

We use this application to illustrate the ability of TimeTrial
to monitor temporal properties of an application. We set
TimeTrial’s frame period to 1 second (meaning that TimeTrial
aggregates performance meta-data over 1 second intervals and
reports performance once per second) and asked for the mean
queue occupancy for the queue from PRNG to the first Split
and also for the queue from the last Avg to Print. The
application runs for 60 seconds. For this execution, all of the
blocks except Print have been assigned to the FPGA and
Print has been assigned to a processor core. As a result,
the first monitored queue is entirely on the FPGA and the
second monitored queue is a virtual queue, moving data from
the FPGA to the processor core.

286

Figure 18 shows the mean queue occupancy over time for
the queue immediately downstream of the PRNG block. The
capacity of this queue is 128, and as is readily apparent from
the graph, within the first second of execution this queue is
full and stays full for the duration of the run.

140 -

120F -
100F -

80F -

Mean Occupancy

401 -

20F -

0 S S S S
20 30 40 50 60

Time (s)

Fig. 18. Mean queue occupancy out of PRNG block in Monte Carlo solution
to Laplace’s equation. This is a hardware-to-hardware queue, entirely within
the FPGA.

Figure 19 shows the mean queue occupancy over time for
the queue upstream of the Print block. Here, the effect
of bulk transfers across the bus is clearly apparent. Data
destined for the Print block is buffered, waiting to be
transferred across the PCI-X bus, until the very end of the
application’s execution, at which point the buffers are flushed
and all of the results are delivered to the Print block. Note
that if the latency of individual data elements moving from
Avg to Print is an important performance metric for this
application, simply monitoring the average rate across the
edge is not sufficient to discover the true nature of this virtual
queue’s activity.

12000

10000

8000

6000

4000

Mean Occupancy

2000

0 I I I I I I
10 20 30 40 50 60

Time (s)

Fig. 19. Mean queue occupancy into Print block in Monte Carlo solution
to Laplace’s equation. This is a hardware-to-software virtual queue, moving
data from the FPGA to a processor core.

Further monitoring using TimeTrial (not shown here)
demonstrates that the Wa 1k blocks are the current performance
bottleneck, and increasing the parallelism to greater than 8
Walk blocks is an important step in improving the overall
application performance.

V. RELATED WORK

There has been a great deal of work in monitoring the
performance of executing applications, from gprof [9] and
TAU [18] for platforms using traditional processor cores to
the tools of Koehler et al. [12] aimed at FPGA designs.
Each of the above systems is tunable with respect to the
impact it can have on the performance of the application (i.e.,
the tradeoff between performance impact and measurement
fidelity is controlled by the user). None of these systems, how-
ever, effectively measures communications across platform
boundaries without incurring significant performance impact.

TimeTrial adopts the approach of dedicating resources to
the monitoring task in an attempt to minimize performance
impact. This approach has its origins in the work of Maloney
and Reed [15], and recent examples include hardware perfor-
mance monitors for the Cell processor [7], soft-core processors
deployed on FPGAs [10], and traditional processors [1].

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented TimeTrial’s approach to monitor-
ing virtual queues in a streaming data application, those queues
that cross the boundaries of the computing platform executing
the application. For those measurements that require data
collection at both the head and the tail of the queue, histograms
of inter-insertion times and inter-departure times are collected
at each end of the queue, and a stochastic discrete-event
simulation model is used to recreate the dynamics of the virtual
queue in question.

As a partial verification of the appropriateness of the
stochastic simulation model, the portions of the virtual queue
that are visible to TimeTrial are also monitored, and if
the stochastic simulation results are not consistent with the
measurements of the sub-queues at the head and the tail of
the virtual queue, the stochastic simulation model is deemed
incorrect and is discarded. In this way, TimeTrial works to not
only model the activity within the virtual queue, but also helps
to verify whether or not its internal model is appropriate.

Future work includes the development of a state-space
Markovian model of Figure 8’s tandem queueing network with
a bounded capacity queue between the two servers. This has
the potential to provide an analytic solution, which might obvi-
ate the need to perform stochastic simulation. Even if a closed-
form solution to the analytic model is unavailable, a numeric
solution can be less expensive than a stochastic discrete-event
simulation run. Alternatively, approximate solution methods
for the bounded capacity queue with upstream blocking do
exist (see, e.g., [16]), which can also be less expensive to
compute than simulation.

ACKNOWLEDGEMENTS

This research was supported by the National Science
Foundation through grants CNS-0751212, CNS-0905368, and
CNS-0931693.

287

[1]

[2]

[3]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

REFERENCES

S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci, “A scalable
cross-platform infrastructure for application performance tuning using
hardware counters,” in Proc. of ACM/IEEE Supercomputing Conf-, 2000.
I. Buck, T. Foley, D. Horn, J. Sugerman, and K. Fatahalian, “Brook
for GPUs: Stream computing on graphics hardware,” ACM Trans. on
Graphics, vol. 23, no. 3, pp. 777-786, Aug. 2004.

R. D. Chamberlain, J. Buhler, M. A. Franklin, and J. H. Buckley,
“Application-guided tool development for architecturally diverse com-
putation,” in Proc. of ACM Symp. on Applied Computing, Mar. 2010,
pp. 496-501.

R. D. Chamberlain, M. A. Franklin, E. J. Tyson, J. H. Buckley,
J. Buhler, G. Galloway, S. Gayen, M. Hall, E. B. Shands, and N. Singla,
“Auto-Pipe: Streaming applications on architecturally diverse systems,”
Computer, vol. 43, no. 3, pp. 42-49, Mar. 2010.

S. J. Farlow, Partial Differential Equations for Scientists and Engineers.
Dover Publications, 1993.

M. A. Franklin, E. J. Tyson, J. Buckley, P. Crowley, and J. Maschmeyer,
“Auto-pipe and the X language: A pipeline design tool and description
language,” in Proc. of Int’l Parallel and Distributed Processing Symp.,
Apr. 2006.

M. Genden, R. Raghavan, M. Riley, J. Spannaus, and T. Chen, “Real-
time performance monitoring and debug features of the first generation
Cell processor,” in Proc. of 1st Workshop on Tools and Compilers for
Hardware Acceleration, Sep. 2006.

M. B. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowski, “Stream-
oriented FPGA computing in the Streams-C high level language,” in
Proc. of IEEE Int’l Symp. on FPGAs for Custom Computing Machines,
2000, pp. 49-58.

S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call
graph execution profiler,” in Proc. of SIGPLAN Symp. on Compiler
Construction, 1982, pp. 120-126.

R. Hough, P. Krishnamurthy, R. D. Chamberlain, R. K. Cytron, J. Lock-
wood, and J. Fritts, “Empirical performance assessment using soft-
core processors on reconfigurable hardware,” in Proc. of Workshop on
Experimental Computer Science, Jun. 2007.

L. Kleinrock, Queueing Systems, Volume 1: Theory.
Sons, 1975.

S. Koehler, J. Curreri, and A. D. George, “Performance analysis chal-
lenges and framework for high-performance reconfigurable computing,”
Parallel Computing, vol. 34, no. 4-5, pp. 217-230, May 2008.

J. M. Lancaster, E. F. B. Shands, J. D. Buhler, and R. D. Chamberlain,
“TimeTrial: A low-impact performance profiler for streaming data ap-
plications,” in Proc. of IEEE Int’l Conf. on Application-specific Systems,
Architectures and Processors, Sep. 2011.

J. M. Lancaster, J. G. Wingbermuehle, and R. D. Chamberlain, “Asking
for performance: Exploiting developer intuition to guide instrumentation
with TimeTrial,” in Proc. of 13th IEEE Int’l Conf. on High Performance
Computing and Communications, Sep. 2011.

A. D. Malony and D. A. Reed, “A hardware-based performance monitor
for the Intel iPSC/2 hypercube,” in Proc. of 4th Int’l Conf. on Super-
computing, 1990, pp. 213-226.

H. Perros and T. Altiok, “Approximate analysis of open networks of
queues with blocking: Tandem configurations,” IEEE Trans. Soft. Eng.,
vol. 12, pp. 450-461, 1986.

J. F. Reynolds, “A proof of the random-walk method for solving
Laplace’s equation in 2-D,” The Mathematical Gazette, vol. 49, no. 370,
pp. 416-420, Dec. 1965.

S. S. Shende and A. D. Malony, “The TAU parallel performance system,”
Int’l J. High Perform. Comput. Appl., vol. 20, no. 2, pp. 287-311, 2006.
W. A. Strauss, Partial Differential Equations: An Introduction. Wiley,
1992.

W. Thies, M. Karczmarek, and S. Amarasinghe, “Streamlt: A language
for streaming applications,” in Proc. of 11th Int’l Conf. on Compiler
Construction, 2002, pp. 179-196.

E. J. Tyson, J. Buckley, M. A. Franklin, and R. D. Chamberlain,
“Acceleration of atmospheric Cherenkov telescope signal processing to
real-time speed with the Auto-Pipe design system,” Nuclear Inst. and
Methods in Physics Research A, vol. 585, no. 2, pp. 474-479, Oct. 2008.
T. Weekes er al., “VERITAS: the very energetic radiation imaging
telescope array system,” Astroparticle Physics, vol. 17, no. 2, pp. 221-
243, May 2002.

John Wiley &

